24 research outputs found

    Simultaneous Implementation Of Ssl And Ipsec Protocols For Remote Vpn Connection

    Get PDF
    A Virtual Private Network is a wide spread technology for connecting remote users and locations to the main core network. It has number of benefits such as cost-efficiency and security. SSL and IPSec are the most popular VPN protocols employed by large number of organizations. Each protocol has its benefits and disadvantages. Simultaneous SSL and IPSec implementation delivers efficient and flexible solution for companies’ with heterogeneous remote connection needs. On the other hand, employing two different VPN technologies opens questions about compatibility, performance, and drawbacks especially if they are utilized by one network device. The study examines the behavior of the two VPN protocols implemented in one edge network device, ASA 5510 security appliance. It follows the configuration process as well as the effect of the VPN protocols on the ASA performance including routing functions, firewall access lists, and network address translation abilities. The paper also presents the cost effect and the maintenance requirements for utilizing SSL and IPSec in one edge network security devic

    Astrometric Effects of Gravitational Wave Backgrounds with non-Luminal Propagation Speeds

    Get PDF
    A passing gravitational wave causes a deflection in the apparent astrometric positions of distant stars. The effect of the speed of the gravitational wave on this astrometric shift is discussed. A stochastic background of gravitational waves would result in a pattern of astrometric deflections which are correlated on large angular scales. These correlations are quantified and investigated for backgrounds of gravitational waves with sub- and super-luminal group velocities. The statistical properties of the correlations are depicted in two equivalent and related ways: as correlation curves and as angular power spectra. Sub-(super-)luminal gravitational wave backgrounds have the effect of enhancing (suppressing) the power in low-order angular modes. Analytical representations of the redshift-redshift and redshift-astrometry correlations are also derived. The potential for using this effect for constraining the speed of gravity is discussed.ER

    pySEOBNR: a software package for the next generation of effective-one-body multipolar waveform models

    Full text link
    We present pySEOBNR, a Python package for gravitational-wave (GW) modeling developed within the effective-one-body (EOB) formalism. The package contains an extensive framework to generate state-of-the-art inspiral-merger-ringdown waveform models for compact-object binaries composed of black holes and neutron stars. We document and demonstrate how to use the built-in quasi-circular precessing-spin model SEOBNRv5PHM, whose aligned-spin limit (SEOBNRv5HM) has been calibrated to numerical-relativity simulations and the nonspinning sector to gravitational self-force data using pySEOBNR. Furthermore, pySEOBNR contains the infrastructure necessary to construct, calibrate, test, and profile new waveform models in the EOB approach. The efficiency and flexibility of pySEOBNR will be crucial to overcome the data-analysis challenges posed by upcoming and next-generation GW detectors on the ground and in space, which will afford the possibility to observe all compact-object binaries in our Universe.Comment: 21 pages, 4 figure

    Theoretical groundwork supporting the precessing-spin two-body dynamics of the effective-one-body waveform models SEOBNRv5

    Full text link
    Waveform models are essential for gravitational-wave (GW) detection and parameter estimation of coalescing compact-object binaries. More accurate models are required for the increasing sensitivity of current and future GW detectors. The effective-one-body (EOB) formalism combines the post-Newtonian (PN) and small mass-ratio approximations with numerical-relativity results, and produces highly accurate inspiral-merger-ringdown waveforms. In this paper, we derive the analytical precessing-spin two-body dynamics for the \texttt{SEOBNRv5} waveform model, which has been developed for the upcoming LIGO-Virgo-KAGRA observing run. We obtain an EOB Hamiltonian that reduces to the exact Kerr Hamiltonian in the test-mass limit. It includes the full 4PN precessing-spin information, and is valid for generic compact objects (i.e., for black holes or neutron stars). We also build an efficient and accurate EOB Hamiltonian that includes partial precessional effects, notably orbit-averaged in-plane spin effects for circular orbits, and derive 4PN-expanded precessing-spin equations of motion, consistent with such an EOB Hamiltonian. The results were used to build the computationally-efficient precessing-spin multipolar \texttt{SEOBNRv5PHM} waveform model.Comment: 35 page

    Astrometric Search Method for Individually Resolvable Gravitational Wave Sources with Gaia.

    Get PDF
    Gravitational waves (GWs) cause the apparent position of distant stars to oscillate with a characteristic pattern on the sky. Astrometric measurements (e.g., those made by Gaia) provide a new way to search for GWs. The main difficulty facing such a search is the large size of the data set; Gaia observes more than one billion stars. In this Letter the problem of searching for GWs from individually resolvable supermassive black hole binaries using astrometry is addressed for the first time; it is demonstrated how the data set can be compressed by a factor of more than 10^{6}, with a loss of sensitivity of less than 1%. This technique was successfully used to recover artificially injected GW signals from mock Gaia data and to assess the GW sensitivity of Gaia. Throughout the Letter the complementarity of Gaia and pulsar timing searches for GWs is highlighted
    corecore